THE APPLICABILITY OF HAMMETT ACIDITY FUNCTIONS TO SUBSTITUTED PYRIDINES AND PYRIDINE 1-OXIDES

C. D. JOHNSON, A. R. KATRITZKY, B. J. RIDGEWELL, NAEEM SHAKIR* and A. M. WHITE School of Chemical Sciences, University of East Anglia, Norwich

(Received 2 December 1964)

Abstract—The compounds named in the title have been investigated to determine whether the H_0 value of their solutions in strong sulphuric acid gives the amount of free base present using the H_0 function equation. Innovations in the experimental procedure afford greater accuracy than in previous similar UV spectral measurements. In general, these compounds are Hammett bases.

RECENT work¹⁻³ has shown that certain amides which undergo O-protonation are not Hammett bases.⁴ Previous work had disclosed that the protonation of carbinols,⁵ which follow the H_R function, olefins⁶ (H_R'), and certain cationic bases,⁷ (H⁺) are also not Hammett bases. We are currently studying the kinetics of electrophilic substitution of compounds containing the pyridine and pyridine-1-oxide nuclei in strong sulphuric acid.^{8,9} Such a study requires knowledge of the relative concentrations of free base and conjugate acid present at known H₀; we therefore investigated, in detail, the protonation behaviour of such compounds.

EXPERIMENTAL

The substituted pyridines were kindly supplied by Professor H. Den Hertog. Where necessary, they were recrystallized. The substituted pyridine-1-oxides were mostly made by oxidizing¹⁰ the corresponding pyridine in peracetic acid. 4-Nitropyridine-1-oxide was prepared by the nitration of pyridine-1-oxide,¹⁰ 3-nitropyridine-1-oxide by oxidation of the 3-aminopyridine with 30% H₂O₂ and trifluoroacetic anhydride,¹¹ and 2-nitropyridine-1-oxide by oxidation of 2-aminopyridine-1-oxide with 30% H₂O₂ and fuming H₂SO₄.¹³ 4-Chloropyridine 1-oxide was prepared by the reaction of acetyl chloride on the 4-nitro compound.¹⁰ M.ps are given in Tables 1 and 2.

Previously,^a standard H₂SO₄ solutions were made by diluting AR acid to a known volume. In the

* On study leave from West Regional Laboratories, Lahore, W. Pakistan.

- ¹ R. Stewart and M. R. Granger, Canad. J. Chem. 39, 2508 (1961).
- * A. R. Katritzky and A. J. Waring, J. Chem. Soc. 1540 (1962).
- * A. R. Katritzky, A. J. Waring and K. Yates, Tetrahedron 19, 465 (1963).
- ⁴ L. P. Hammett and A. J. Deyrup, J. Amer. Chem. Soc. 54, 2721 (1932).
- ¹ N. C. Deno, J. J. Jaruzelski and A. Schriesheim, J. Amer. Chem. Soc. 77, 3044 (1955).
- * N. C. Deno, P. T. Groves and G. Saines, J. Amer. Chem. Soc. 81, 5790 (1959).
- 7 J. C. D. Brand, W. C. Horning and M. B. Thornley, J. Chem. Soc. 1374 (1952).
- * A. R. Katritzky and B. J. Ridgewell, Proc. Chem. Soc., 114 (1962) J. Chem. Soc. 3753 (1963).
- * A. R. Katritzky, B. J. Ridgewell and A. M. White, Chem. & Ind. 1576 (1964).
- ¹⁰ E. Ochiai, J. Org. Chem. 18, 534 (1953).
- ¹¹ E. C. Taylor and J. S. Driscoll, J. Org. Chem. 25, 1716 (1960).
- ¹⁹ E. V. Brown, J. Amer. Chem. Soc. 79, 3565 (1957).

present work, two stock solutions of acid were used; one AR acid and the other AR acid diluted to about 50% w/w. Both solutions were standardized by titration of diluted aliquots against standard 0.1 N NaOH. The acids, which were stored in a dry atmosphere (P_aO_b), were mixed (or diluted with water) in appropriate proportions by wt. to give acids of known strength.

Stock solutions of substituted pyridines in dilute acid of known strength, and of the substituted pyridine-1-oxide in water, were made up, and weighed amounts, pipetted into 20 ml Grade A graduated flasks. Acids of known concentrations, prepared as detailed above, were used to make up to the mark, and the H₀ of the subsequent solution obtained by interpolation from the figures of Paul and Long¹⁸ which over the range considered are equiv. to those of Jorgenson and Hartter.¹⁴ For low acid concentrations (<10% w/w), pH = H₀; hence the H₀ values used were determined by pH measurement. This method of making up the solutions differs from that of Katritzky *et al.*² in so far as weights instead of volumes are used in the present work.

Complete spectra were recorded on a Perkin-Elmer "Ultracord" model 137 self recording spectrophotometer, and at certain wavelengths (Tables 1 and 2) on a Unicam SP 500 instrument. The appropriate solvent was used as a blank for each determination.

RESULTS

Graphs of extinction coefficient against H_0 showed the usual sigmoid-type curve (Fig. 1). The values of n and pKa in Equation (i) were obtained by plotting log_{10} ([cation]/[base]) against H_0 (Fig. 2)

$$H_0 = pKa - n \log_{10} ([cation]/[base])$$
(i)

The former quantity was obtained from:

$$\frac{[\text{cation}]}{[\text{base}]} = \frac{\epsilon_{\rm B} - \epsilon}{\epsilon - \epsilon_{\rm BH^+}}$$
(ii)

where ϵ , $\epsilon_{\rm B}$, $\epsilon_{\rm BH^+}$ have their usual significance. For each point on the log₁₀ ([cation]/ [base]) against the H₀ plot the values taken for $\epsilon_{\rm B}$ and $\epsilon_{\rm BH^+}$ in (ii) were those found from the plot of extinction coefficient against H₀ by producing the linear arms of this latter plot to the required H₀ value, i.e. the assumption made is that the medium effect on $\epsilon_{\rm BH^+}$ and $\epsilon_{\rm B}$ remains linear for the short extrapolations involved: the procedure is illustrated in Fig. 1 for one H₀ value.

¹⁸ M. A. Paul and F. A. Long, Chem. Rev. 57, 1 (1957).

¹⁴ M. J. Jorgenson and D. R. Hartter, J. Amer. Chem. Soc. 85, 878 (1963).

The values of n and pKa found are quoted in Tables 1 and 2. The errors (Tables 1 and 2) quoted were obtained from least squares plots of \log_{10} ([cation]/[base]) against H₀, assuming that the plots are linear for values of \log_{10} ([cation]/[base]) between $-1\cdot1$ to $+1\cdot1$. They take into account errors in the spectral determinations,¹⁵ which are the greatest source of error of all the separate operations involved in this procedure.

Results were also calculated using the mathematical method of Katritzky *et al.*³ This procedure is theoretically equivalent to the one quoted above, and the results agreed well with the values quoted in Tables 1 and 2, but they are not reported, as in this method the gradient of the tangent to the curve of ϵ against H₀ at the point where [B] = [BH⁺] has to be estimated by the eye; and no standard errors are available.

Our method becomes equivalent to the Hammett procedure⁴ only when the arms of the ϵ against H₀ curve are both parallel to the H₀ axis.

DISCUSSION

All the pyridines and pyridine-1-oxides examined, with the exception of certain 2-substituted pyridine-1-oxides, give values of n close to unity, and so may be regarded as Hammett bases. As Arnett¹⁶ points out, this assumes that the Hammett plot extrapolates to the standard state in water (pH = 7). If this criterion is not obeyed, the observed value of pKa does not refer to the same standard state as that for an ideal Hammett base, and hence the correct value of [cation]/[base] cannot be calculated. Attention should be drawn to the case of benzoic acid, which follows ideal Hammett base behaviour in the observable region of indicator change, but departs sharply from it at lower acidities.¹⁶ This is unlikely to occur for our compounds as they cover a wide range of basicities ($pH \ 1$ to $H_0 - 6.5$ for pyridines, and $pH \ 0.4$ to

¹⁵ G. Svehla, A. Pall and L. Erdey, *Talanta* 10, 719 (1963).

¹⁶ E. M. Arnett, *Progress in Physical Organic Chemistry* (Edited by Cohen, Streitwiesser and Taft) Vol 1. Interscience (1963).

 $H_0 - 3$ for the 1-oxides), and no significant deviations from Hammett base behaviour have been observed (except the anomalous 2-substituted pyridine-1-oxides mentioned above). For any pyridine or pyridine-1-oxide base the ratio [cation]/[base] at any given H_0 value is given by Eq. (i) taking n = 1 and using the measured value of pKa.

Substituent(s)	p <i>Ka</i>	n	Wavelength for determination $(m\mu)$	m.p.	17,18 m.p. (lit)
3,5-Dichloro	0.75 ± 0.03	0·85 ± 0·05	290	65–66	66-67
2,3-Dichloro	-0.85 ± 0.01	0.98 ± 0.03	290	66-67	66·5–67
2,6-Dichloro	-2.86 ± 0.02	1.01 ± 0.03	285	85-87	87-88
2,3,5,6-Tetrachloro	-5.50 ± 0.02	0.82 ± 0.04	317	88- 89	90.5-91.5
Pentachloro	-6.02 ± 0.02	0.80 ± 0.04	320	123-124	125-126
3,4,5-Tribromo	0·45 ± 0·01	0.95 ± 0.03	297	103-105	106-5-107-5
2,3,4-Tribromo	-1.07 ± 0.02	0.87 ± 0.03	296	81-83	84-85
2,4,6-Tribromo	-3.36 ± 0.02	0.97 ± 0.03	297	105-107	107.5-108.5
2,3,6-Tribromo	-3.81 ± 0.01	1.03 ± 0.01	313	79-5-80-5	82-83
2,3,4,5-Tetrabromo	-2·47 ± 0·01	1.14 ± 0.03	313	72.5-73.5	74.5-75.5
2,3,5,6-Tetrabromo	-4.90 ± 0.02	0.93 ± 0.03	317	99-101	103-5-104
Pentabromo	-5.23 ± 0.02	0.88 ± 0.04	333	207–208	209.5-210

TABLE 1. SUBSTITUTED PYRIDINES

TABLE 2. SUBSTITUTED PYRIDINE-1-OXIDES

Substituent(s)	р <i>Ка</i>	n	Wavelength for determination $(m\mu)$	m.p.	m.p.(lit)
4-Nitro	-1·73 ± 0·05	1·05 ± 0·10	310	158-159	15910
3-Nitro	-1.07 ± 0.04	1.00 ± 0.10	280	173–174	172-17311
2-Nitro	-2.71 ± 0.02	1·44 ± 0·06	245	86.5-87.5	85-8618
4-Chloro	$+0.33 \pm 0.02$	1·10 ± 0·04	265	168-169	169-510
3-Chloro	-0.13 ± 0.03	1.10 0.02	260	55-564	
2-Chloro	-0.77 ± 0.03	1.47 ± 0.07	255	66 –67⁴	67–68 ¹⁸
4-Acetyl	-0.47 ± 0.01	1.02 ± 0.02	290	131-132	132-135**
2-Acetyl	-0.45 ± 0.01	1·01 ± 0·03	265	37-38°	
3-Bromo	-0.16 ± 0.02	1.08 ± 0.04	260	45-46ª	42 ³¹
2-Cyano	-2.08 ± 0.03	1.23 ± 0.09	268	116-117	
3,5-Dibromo	-0.85 ± 0.05	1.06 ± 0.10	266	141-142	143-144**

^a Deliquescent

^b Very deliquescent, m.p. determined in an evacuated tube.

A plot (Fig. 3) of pKa against the appropriate substituent constant²³ (σ^{-1} for the 4-acetyl and 4-nitro substituent and σ for the remainder, excluding ortho substituents) fits approximately the straight line ($\rho = 1.9$) obtained by Jaffe²³ for other substituted pyridine-1-oxides. The substituted pyridines show a general trend of decreasing basicity with increasing number of halogen atoms.

- ¹⁸ H. J. den Hertog, J. C. M. Schogt, J. de Bruyn, A. de Klerk, Rec. Trav. Chim. 69, 673 (1950).
- ¹⁹ A. R. Katritzky, J. Chem. Soc. 191 (1957).
- ³⁰ A. R. Katritzky, J. Chem. Soc. 2404 (1956).
- ²¹ J. W. Clark-Lewis and R. P. Singh, J. Chem. Soc. 2379 (1962).
- ²² H. J. den Hertog, C. H. Henkens and K. Dilz, Rec. Trav. Chim. 72, 296 (1953).
- ¹⁰ H. H. Jaffé, J. Org. Chem. 23, 1790 (1958).

¹⁷ H. J. den Hertog, Rec. Trav. Chim. 64, 85 (1945).

Arnett and Mach²⁴ recently found that substituted dimethylanilines do not follow H_0 but generate an acidity function, denoted H_0''' which lies midway between H_0 and the acidity function H_R' for arylcarbonium ions. The compliance of pyridines and pyridine oxides to the H_0 function is rather surprising, and emphasizes the dangers of seemingly simple explanations of acidity function behaviour in terms of specific hydration numbers.

Acknowledgement—This work was carried out during the tenure (by B. J. R.) of a D.S.I.R. Postdoctoral Assistantship. We thank Frdk. D. Edwards Scholarship Trust for providing a maintenance grant (for A. M. W.).

24 E. M. Arnett and G. W. Mach, J. Amer. Chem. Soc. 86, 2671 (1964).